

HURST EXPONENT AND FINANCIAL MARKET PREDICTABILITY

Bo Qian Khaled Rasheed
Department of Computer Science

University of Georgia
Athens, GA 30601

USA
[qian, khaled]@cs.uga.edu

ABSTRACT
The Hurst exponent (H) is a statistical measure used to
classify time series. H=0.5 indicates a random series
while H>0.5 indicates a trend reinforcing series. The
larger the H value is, the stronger trend. In this paper we
investigate the use of the Hurst exponent to classify series
of financial data representing different periods of time.
Experiments with backpropagation Neural Networks
show that series with large Hurst exponent can be
predicted more accurately than those series with H value
close to 0.50. Thus Hurst exponent provides a measure
for predictability.

KEY WORDS
Hurst exponent, time series analysis, neural networks,
Monte Carlo simulation, forecasting

1. Introduction

The Hurst exponent, proposed by H. E. Hurst [1] for use
in fractal analysis [2],[3], has been applied to many
research fields. It has recently become popular in the
finance community [4],[5],[6] largely due to Peters’ work
[7],[8]. The Hurst exponent provides a measure for long-
term memory and fractality of a time series. Since it is
robust with few assumptions about underlying system, it
has broad applicability for time series analysis. The
values of the Hurst exponent range between 0 and 1.
Based on the Hurst exponent value H, a time series can be
classified into three categories. (1) H=0.5 indicates a
random series. (2) 0<H<0.5 indicates an anti-persistent
series. (3) 0.5<H<1 indicates a persistent series. An anti-
persistent series has a characteristic of “mean-reverting”,
which means an up value is more likely followed by a
down value, and vice versa. The strength of “mean-
reverting” increases as H approaches 0.0. A persistent
series is trend reinforcing, which means the direction (up
or down compared to the last value) of the next value is
more likely the same as current value. The strength of
trend increases as H approaches 1.0. Most economic and
financial time series are persistent with H>0.5.

In time series forecasting, the first question we want to
answer is whether the time series under study is
predictable. If the time series is random, all methods are
expected to fail. We want to identify and study those time
series having at least some degree of predictability. We
know that a time series with a large Hurst exponent has
strong trend, thus it’s natural to believe that such time
series are more predictable than those having a Hurst
exponent close to 0.5. In this paper we use neural
networks to test this hypothesis.

 Neural networks are nonparametric universal function
approximators [9] that can learn from data without
assumptions. Neural network forecasting models have
been widely used in financial time series analysis during
the last decade [10],[11],[12]. As universal function
approximators, neural networks can be used for surrogate
predictability. Under the same conditions, a time series
with a smaller forecasting error than another is said to be
more predictable. We study the Dow-Jones index daily
return from Jan. 2, 1930 to May. 14, 2004 and calculate
the Hurst exponent of each period of 1024 trading days.
We select 30 periods with large Hurst exponents and 30
periods with Hurst exponents close to random series, and
then we use these data to train neural networks. We
compare forecasting errors for these two groups and find
that the errors are significantly different. This research is
done using Matlab. All Matlab programs generating
result for this paper can be downloaded from
www.arches.uga.edu/~qianbo/research.

The remainder of the paper is organised as follows:
Section 2 describes the Hurst exponent in detail. Section
3 then describes the monte carlo simulation process we
used to generate data with similar structure to the
financial series of interest to us. Section 4 describes a
scramble test that we conducted to help verify that there is
structure in the series due to the order of samples. Section
5 describes neural networks and their use to verify that
sequences with larger values of the Hurst exponent can be
more accurately learned and predicted than those with
lower Hurst exponent values. Finally, the paper is
concluded in section 6.

2. Hurst exponent and R/S analysis

The Hurst exponent can be calculated by rescaled range
analysis (R/S analysis). For a time series, X = X1, X2, …
Xn, R/S analysis method is as follows:

(1) Calculate mean value m.

∑
=

=
n

i
in Xm

1

1

(2) Calculate mean adjusted series Y

Yt = Xt – m, t = 1, 2, …, n

(3) Calculate cumulative deviate series Z

∑
=

=
t

i
it YZ

1
, t = 1, 2, …, n

(4) Calculate range series R

Rt = max(Z1, Z2, …, Zt) – min(Z1, Z2, …, Zt)
t = 1, 2, …, n

(5) Calculate standard deviation series S

∑
=

−=
t

i
it uX

t
S

1

2)(1
 t = 1, 2, …, n

Here u is the mean value from X1 to Xt.

(6) Calculate rescaled range series (R/S)

(R/S)t = Rt/St t = 1, 2, …, n

Note (R/S)t is averaged over the regions [X1, Xt], [Xt+1,
X2t] until [X(m-1)t+1, Xmt] where m=floor(n/t). In practice,
to use all data for calculation, a value of t is chosen that is
divisible by n.

Hurst found that (R/S) scales by power-law as time
increases, which indicates

(R/S)t = c*tH

Here c is a constant and H is called the Hurst exponent.
To estimate the Hurst exponent, we plot (R/S) versus t in
log-log axes. The slope of the regression line
approximates the Hurst exponent. For t<10, (R/S)t is not
accurate, thus we shall use a region of at least 10 values
to calculate rescaled range. Figure 2.1 shows an example
of R/S analysis.

Figure 2.1. R/S analysis for Dow-Jones daily return

from 11/18/1969 to 12/6/1973

In our experiments, we calculated the Hurst exponent for
each period of 1024 trading days (about 4 years). We use
t = 24, 25, …, 210 to do regression. In the financial domain,
it is common to use log difference as daily return. This is
especially meaningful in R/S analysis since cumulative
deviation corresponds to cumulative return. Figure 2.2
shows the Dow-Jones daily return from Jan. 2, 1930 to
May 14, 2004. Figure 2.3 shows the corresponding Hurst
exponent for this period. In this period, Hurst exponent
ranges from 0.4200 to 0.6804. We also want to know
what the Hurst exponent would be for a random series in
our condition.

Figure 2.2. Dow-Jones daily return from 1/2/1930 to 5/14/2004

1930 1940 1950 1960 1970 1980 1990 2000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Year

H
ur
st
 E
x
po
ne
nt

Figure 2.3. Hurst exponent for Dow-Jones daily return from 1/2/1930 to 5/14/2004

3. Monte Carlo simulation

For a random series, Feller [13] gave expected (R/S)t
formula as 3.1.

E((R/S)t) = (n*π/2)0.50 (3.1)

However, this is an asymptotic relationship and is only
valid for large t. Anis and Lloyd [14] provided the
following formula to overcome the bias calculated from
(3.1) for small t:

∑
−

=
−Γ−Γ=

1

1
/)(*)))*5.0(*/())1(*5.0(()/((

t

r
rrttttSRE π

(3.2)

For t>300, it is difficult to calculate the gamma function
by most computers. Using Sterling’s function, formula
(3.2) can be approximated by:

∑
−

=
−−=

1

1
/)(*50.0)2/*())/((

t

r
rrtt

t
SRE π (3.3)

Peters [8] gave equation (3.4) as a correction for (3.2).

∑
−

=
−−−=

1

1
/)(*50.0)2/*(*)/)5.0(())/((

t

r
rrtttt

t
SRE π

(3.4)

We calculate the expected (R/S) values for t=24, 25,…,210
and do least squares regression at significance level
α=0.05. Results are shown in table 3.1.

log2(E(R/S)) log2(t)
Feller Anis Peters

4 0.7001 0.6059 0.5709
5 0.8506 0.7829 0.7656
6 1.0011 0.9526 0.9440
7 1.1517 1.1170 1.1127

8 1.3022 1.2775 1.2753
9 1.4527 1.4345 1.4340
10 1.6032 1.5904 1.5902
Regression
Slope (H)

0.5000
±5.5511e-016

0.5436
± 0.0141

0.5607
± 0.0246

Table 3.1. Hurst exponent calculation from Feller,

Anis and Peters formula

From table 3.1, we can see that there are some differences
between Feller’s, Anis’ and Peters’ formulae. Moreover,
their formulae are based on large numbers of data points.
In our case, the data is fixed at 1024 points. So what is the
Hurst exponent for random series in our case?

Fortunately, we can use Monte Carlo simulation to derive
the result. We generate 10,000 Gaussian random series.
Each series has 1024 values. We calculate the Hurst
exponent for each series and then average them. We
expect the average number to approximate the true value.
We repeated this process 10 times. Table 3.2 below gives
the simulation results.

 Simulated Hurst

Exponent
Standard deviation

(Std.)
1 0.5456 0.0486
2 0.5452 0.0487
3 0.5449 0.0488
4 0.5454 0.0484
5 0.5456 0.0488
6 0.5454 0.0481
7 0.5454 0.0487
8 0.5457 0.0483
9 0.5452 0.0484
10 0.5459 0.0486
Mean 0.5454 0.0485
Std. 2.8917e-004

Table 3.2. Monte Carlo simulations for Hurst
exponent of random series

From table 3.2, we can see that in our situation, the Hurst
exponent calculated from Monte Carlo simulations is
0.5454 with standard deviation 0.0485. Our result is very
close to Anis’ formula. Based on the above simulations,
with 95% confidence, the Hurst exponent is in the interval
0.5454 ± 1.96*0.0485, which is between 0.4503 and
0.6405. We choose those periods with Hurst exponent
greater than 0.65 and expect those periods to be bearing
some structure different from random series. However,
since these periods are chosen from a large sample (total
17651 periods), we want to know if there exists true
structure in these periods, or just by chance. We run a
scramble test for this purpose.

4. Scramble test

To test if there exists true structure in the periods with
Hurst exponent greater than 0.65, we randomly choose 10
samples from those periods. For each sample, we
scramble the series and then calculate the Hurst exponent
for this scrambled series. The scrambled series has the
same distribution as the original sample except that the
sequence is random. If there exists some structure in the
sequence, after scrambling the structure will be destroyed
and the calculated Hurst exponent should be close to that
of a random series. In our experiment, we scramble each
sample 500 times and then the average Hurst exponent is
calculated. The results are shown in table 4.1 below.

 Hurst exponent

after scrambling
Standard
deviation

1 0.5492 0.046
2 0.5450 0.047
3 0.5472 0.049
4 0.5454 0.048
5 0.5470 0.048
6 0.5426 0.048
7 0.5442 0.051
8 0.5487 0.048
9 0.5462 0.048
10 0.5465 0.052
Mean 0.5462 0.048

Table 4.1. The average Hurst exponent on 500
scrambling runs

From table 4.1, we can see that the Hurst exponents after
the scrambling of samples are all very close to 0.5454
which is the number from our simulated random series.
Given this result, we can conclude that there must exist
some structure in those periods making them different
from random series and that scrambling destroys the
structure. We hope this structure can be exploited for
prediction. Neural networks, as universal function
approximators, provide a powerful tool to learn the
underlying structure. They are especially useful when the
underlying rules are unknown. We expect neural

networks to discover the structure and thus benefit from it.
We use neural network prediction error as a measure of
predictability. Below we compare prediction errors of the
periods with Hurst exponents greater than 0.65 with those
between 0.54 and 0.55.

5. Neural networks

In 1943, McClloch and Pitts [15] proposed a
computational model simulating neurons. This work is
generally thought as the beginning of artificial neural
networks research. Rosenblatt [16],[17] popularized the
concept of perceptrons and created several perceptron
learning rules. However, in 1969, Minsky and Papert [18]
pointed that perceptrons cannot solve any non “linearly
separable” problems. People knew that multi-layer
perceptrons (MLP) can simulate non “linearly separable”
functions, but no one knew how to train them. Neural
network research was then nearly stopped until 1986. In
1986, Rumelhart [19] used the backpropagation algorithm
to train MLP and thus resolved this long obsessed
problem among connectionists. Since then neural
networks have regained considerable interest from many
research fields. Neural networks have become popular in
the finance society and the research fund for neural
network applications from financial institutions is the
second largest [20].

A neural network is an interconnected assembly of simple
processing nodes. Each node calculates a summation of
weighted inputs and then outputs its transfer function
value to other nodes. The Feedforward backpropagation
network is the most widely used network paradigm.
Using the backpropagation training algorithm, neural
network adjusts the weights so that it will minimize the
square difference (error) between its observed outputs and
their target values. The backpropagation algorithm uses a
gradient descent method to find a local minimum on the
error surface. It calculates the partial derivative of the
square error for each weight. The opposite of these
partial derivatives (gradient) gives the direction in which
the error decreases most. This direction is called the
steepest descent direction. The standard backpropagation
algorithm adjusts the weights along the steepest descent
direction. Although the error in the steepest descent
direction is decreased most rapidly, it usually converges
slowly and tends to be stranded due to oscillation.
Therefore many backpropagation variants were invented
to improve performance by optimizing direction and step
size. To name a few, we have backpropagation with
momentum, conjugate gradient, Quasi-Newton and
Levenberg-Marquardt [21]. After training, we can use the
network to do prediction given unseen inputs. In neural
network forecasting, the first step is data preparation and
pre-processing. After training, we can use the network to
do prediction given unseen inputs. In neural network
forecasting, the first step is data preparation and pre-
processing.

5.1. Data preparation and pre-processing

For Dow-Jones daily return data, we calculated the Hurst
exponent for each period of 1024 trading days from
1/2/1930 to 5/14/2004. Among the total of 17651
periods, there are 65 periods with Hurst exponents greater
than 0.65 and 1152 periods with Hurst exponents between
0.54 and 0.55. Figure 5.3 below shows the histogram of
Hurst exponents for all periods.

Figure 5.3. Histogram of all calculated Hurst

exponents

We randomly chose 30 periods from those with Hurst
exponent greater than 0.65 and 30 periods from those with
Hurst exponent between 0.54 and 0.55. These two groups
of 60 samples constituted our initial data set.

Given a time series x1, x2, …, xi, xi+1, how do we
construct a vector Xi from x1, x2, …, xi to predict xi+1?
Taken’s theorem [22] tells us that we can reconstruct the
underlying dynamical system by time-delay embedding
vectors Xi = (xi, xi+τ, xi+2τ,…,xi+(d-1)τ) if we have
appropriate d and τ. Here d is called the embedding
dimension and τ is called the separation. Using the auto-
mutual information and false nearest neighbour methods
[23], we can estimate d and τ. We used the TSTOOL [24]
package to run the auto-mutual information and false
nearest neighbour methods for our 60 data sets.
Separations of all data sets are suggested to be 1 by auto-
mutual information method. This is consistent with our
intuition since we have no reason to use separated values.
As for embedding dimension, our data sets are suggested
to be from 3 to 5. We shall examine this later.

After building the time-delay vector Xi and target value
xi+1, we normalized the inputs Xi and output xi+1 to mean
0 and standard deviation 1. We had no need to normalize
the output to a limited range, say –0.85 to 0.85, to avoid
saturation because we used a linear transfer function in
the output layer.

We used a commonly used approach to deal with the
over-fitting problem in neural networks. We split the data
set to three parts for training, validation and testing. The
training data are used to adjust the weights through error
backpropagation. The validation data are used to stop
training when the mean square error in the validation data
increases. The network’s prediction performance is
judged by the testing data. We used the first 60% of the
data for training, the following 20% for validation and the
last 20% for testing. In this way, we can have more
confidence using the final network model for prediction
since the forecasting data follow the testing data directly.

5.2 Neural network construction

Although neural networks are universal function
approximators, we still need to pay much attention to their
structure. How many layers should we use? How many
nodes should we include in each layer? Which learning
algorithm should we choose? In practice, most
applications use one hidden layer since there is no
apparent advantages for multi-hidden-layer networks over
single-hidden-layer networks. Thus we used a single
hidden layer network structure in our study. For learning
algorithm, we tested the Levenberg-Marquardt, conjugate
gradient method, and the backpropagation with
momentum algorithms. We find that Levenberg-
Marquardt beats the other algorithms consistently in our
test samples. We chose the Levenberg-Marquardt
learning algorithm with the sigmoid transfer function in
the hidden layer and a linear transfer function in the
output layer. Now we need to determine the embedding
dimension and the number of hidden nodes. A heuristic
rule to determine the number of hidden nodes is that the
total degrees of freedom of a network should equal one
and half of the square root of the total data numbers.
Based on this rule, we have the following equation:

(#input nodes+1)*(#hidden nodes) + (#hidden
nodes+1)*(#output nodes) = 1.5sqrt(#data) (5.2.1)

In equation (5.2.1), 1 is for bias node. For dimension 3,
we have:

 (3+1)*(#hidden nodes)+(#hidden nodes+1) = 1.5sqrt(1024)

The solution for (#hidden nodes) is 10. Similarly, we find
that the number of hidden nodes for dimensions 4 and 5
are 8 and 7 respectively. For each dimension, we
examine 5 network structures with the number of hidden
nodes adjacent to the number suggested. For example 8, 9,
10, 11, 12 hidden nodes for dimension 3. We randomly
choose 5 periods from each group (the group with Hurst
exponents greater than 0.65 and the group with Hurst
exponents between 0.54 and 0.55) to train each network.
Each network is trained 100 times, and then the minimum
NRMSE (Normalized Root Mean Square Error) is
recorded. NRMSE is defined as:

∑
∑

−

−
=

i i

i ii

TT

TO
NRMSE

)(

)(2

 (5.2.2)

In (5.2.2), O is output value and T is target value.
NRMSE gives a performance comparison to the mean
prediction method. If we always use the mean value to do
prediction, NRMSE will be 1. NRMSE is 0 when all
predictions are correct.

Table 5.1-5.3 gives the training results for various
network structures.

 Dimension 3, Hidden nodes
 8 9 10 11 12 MIN Std.

1 0.9572 0.9591 0.9632 0.9585 0.9524 0.9524 0.0039
2 0.9513 0.9531 0.9560 0.9500 0.9523 0.9500 0.0023
3 0.9350 0.9352 0.9332 0.9328 0.9359 0.9328 0.0013
4 0.9359 0.9426 0.9383 0.9351 0.9313 0.9313 0.0042
5 0.9726 0.9686 0.9652 0.9733 0.9647 0.9647 0.0040
6 0.9920 0.9835 0.9892 0.9793 0.9931 0.9793 0.0059
7 0.9831 0.9813 0.9725 0.9845 0.9825 0.9725 0.0048
8 0.9931 0.9852 0.9832 0.9877 0.9907 0.9832 0.0040
9 0.9684 0.9790 0.9773 0.9815 0.9862 0.9684 0.0066

10 0.9926 1.0044 1.0047 1.0014 1.0039 0.9926 0.0051
Mean 0.9681 0.9692 0.9683 0.9684 0.9693 0.9627 0.0042
Std. 0.0225 0.0215 0.0221 0.0232 0.0255 0.0207 0.0015

Table 5.1. NRMSE for dimension 3 with hidden nodes

8, 9, 10, 11 and 12

 Dimension 4, Hidden nodes
 6 7 8 9 10 MIN Std.

1 0.9572 0.9572 0.9557 0.9558 0.9633 0.9557 0.0031
2 0.9534 0.9554 0.9523 0.9518 0.9574 0.9518 0.0023
3 0.9373 0.9406 0.9414 0.9437 0.9404 0.9373 0.0023
4 0.9419 0.9471 0.9392 0.9332 0.9376 0.9332 0.0052
5 0.9691 0.9678 0.9597 0.9669 0.9662 0.9597 0.0037
6 0.9907 0.9939 0.9836 0.9948 0.9876 0.9836 0.0046
7 0.9902 0.9816 0.9872 0.9766 0.9855 0.9766 0.0053
8 0.9852 0.9842 0.9802 0.9865 0.9878 0.9802 0.0029
9 0.9809 0.9729 0.9722 0.9669 0.9741 0.9669 0.0050

10 0.9916 0.9957 0.9991 1.0025 0.9959 0.9916 0.0041
Mean 0.9698 0.9696 0.9671 0.9679 0.9696 0.9637 0.0038
Std. 0.0210 0.0193 0.0204 0.0225 0.0203 0.0196 0.0012

Table 5.2. NRMSE for dimension 4 with hidden nodes

6, 7, 8, 9 and 10

 Dimension 5, Hidden nodes
 5 6 7 8 9 MIN Std.

1 0.9578 0.9560 0.9617 0.9589 0.9622 0.9560 0.0026
2 0.9441 0.9466 0.9456 0.9456 0.9427 0.9427 0.0015
3 0.9410 0.9395 0.9449 0.9428 0.9396 0.9395 0.0023
4 0.9546 0.9453 0.9414 0.9409 0.9479 0.9409 0.0056
5 0.9659 0.9501 0.9671 0.9653 0.9653 0.9501 0.0071
6 0.9906 0.9919 0.9898 0.9901 0.9891 0.9891 0.0010
7 0.9803 0.9819 0.9805 0.9840 0.9837 0.9803 0.0017
8 0.9912 0.9980 1.0009 0.9991 1.0049 0.9912 0.0050
9 0.9770 0.9747 0.9742 0.9761 0.9689 0.9689 0.0032

10 0.9909 0.9984 0.9975 0.9977 0.9951 0.9909 0.0031
Mean 0.9693 0.9682 0.9704 0.9701 0.9699 0.9650 0.0033
Std. 0.0194 0.0233 0.0220 0.0226 0.0227 0.0217 0.0020

Table 5.3. NRMSE for dimension 5 with hidden nodes
5, 6, 7, 8, and 9

From table 5.1 to 5.3, we can see that the differences of
NRMSE for nodes within each dimension are very small.
The number of hidden nodes with minimum average
NRMSE for dimension 3, 4, 5 are 8, 8 and 6 respectively.
Thus we use 8, 8, and 6 hidden nodes network for
dimension 3, 4, and 5 to do prediction. Each network is
trained 100 times and the minimum NRMSE is recorded.
Final NRMSE is the minimum of 3 dimensions. Table
5.4 gives NRMSE of our initial 60 samples for two
groups.

 H>0.65 0.55>H>
0.54 H>0.65 0.55>H>

0.54
1 0.9534 0.9863 16 0.93 0.9747
2 0.9729 0.9784 17 0.9218 0.9738
3 0.9948 0.9902 18 0.9256 0.9635
4 0.9543 0.9754 19 0.9326 0.957
5 0.9528 0.9773 20 0.937 0.9518
6 0.9518 0.9477 21 0.9376 0.9542
7 0.9466 0.9265 22 0.9402 0.9766
8 0.9339 0.9598 23 0.9445 0.9901
9 0.9299 0.9658 24 0.9498 0.9777

10 0.9435 0.9705 25 0.948 0.9814
11 0.9372 0.9641 26 0.9486 0.9778
12 0.9432 0.9824 27 0.9451 0.9968
13 0.9343 0.9557 28 0.9468 0.9966
14 0.9338 0.9767 29 0.9467 0.9977
15 0.9265 0.9793 30 0.9542 0.9883

Mean 0.9439 0.9731
Std. 0.0145 0.0162

Table 5.4. NRMSE for two groups

We ran the unpaired student’s t test for the null hypothesis
that the mean values of the two groups are equal. After
calculation, the t statistic is 7.369 and p-value is 7.0290e-
010. This indicates the two means are significantly
different and the chance of equality is essentially 0. This
result confirms that the time series with larger Hurst
exponent can be predicted more accurately.

6. Conclusion

In this paper, we analyze the Hurst exponent for all 1024-
trading-day periods of the Dow-Jones index from Jan.2,
1930 to May 14, 2004. We find that the periods with
large Hurst exponents can be predicted more accurately
than those with H values close to random series. This
suggests that stock markets are not totally random in all
periods. Some periods have strong trend structure and
this structure can be learnt by neural networks to benefit
forecasting.

Since the Hurst exponent provides a measure for
predictability, we can use this value to guide data
selection before forecasting. We can identify time series
with large Hurst exponents before we try to build a model
for prediction. Furthermore, we can focus on the periods
with large Hurst exponents. This can save time and effort
and lead to better forecasting.

References:

[1] H.E. Hurst, Long-term storage of reservoirs: an
experimental study, Transactions of the American society
of civil engineers, 116, 1951, 770-799.

[2] B.B. Mandelbrot & J. Van Ness, Fractional Brownian
motions, fractional noises and applications, SIAM Review,
10, 1968, 422-437

[3] B. Mandelbrot, The fractal geometry of nature (New
York: W. H. Freeman, 1982).

[4] C.T. May, Nonlinear pricing : theory & applications
(New York : Wiley, 1999)

[5] M. Corazza & A.G. Malliaris, Multi-Fractality in
Foreign Currency Markets, Multinational Finance
Journal, 6(2), 2002, 65-98.

[6] D. Grech & Z. Mazur, Can one make any crash
prediction in finance using the local Hurst exponent idea?
Physica A: Statistical Mechanics and its Applications,
336, 2004, 133-145

[7] E.E. Peters, Chaos and order in the capital markets: a
new view of cycles, prices, and market volatility (New
York: Wiley, 1991).

[8] E.E. Peters, Fractal market analysis: applying chaos
theory to investment and economics (New York: Wiley,
1994).

[9] K. Hornik, M. Stinchcombe & H. White, Multilayer
feedforward networks are universal approximators,
Neural networks, 2(5), 1989, 259-366

[10] S. Walczak, An empirical analysis of data
requirements for financial forecasting with neural
networks, Journal of management information systems,
17(4), 2001, 203-222

[11] E. Gately, Neural networks for financial forecasting
(New York: Wiley, 1996)

[12] A. Refenes, Neural networks in the capital markets
(New York: Wiley, 1995)

[13] W. Feller, The asymptotic distribution of the range of
sums of independent random variables, The annals.of
mathematical statistics, 22, 1951, 427-432

[14] A.A. Anis & E.H. Lloyd, The expected value of the
adjusted rescaled hurst range of independent normal
summands, Biometrika, 63, 1976, 111-116

[15] W. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bulletin of
Mathematical Biophysics, 7, 1943,:115 - 133.

[16] F. Rosenblatt, The Perceptron: a probabilistic model
for Information storage and organization in the brain,
Psychological Review, 65(6), 1958, 386-408.

[17] F. Rosenblatt,, Principles of neurodynamics,
(Washington D.C.: Spartan Press, 1961).

[18] M. Minsky & S. Papert, Perceptrons (Cambridge,
MA: MIT Press, 1969)

[19] D.E. Rumelhart, G.E. Hinton & R.J. Williams,
Learning internal representations by error propagation, in
Parallel distributed processing, 1, (Cambridge, MA: MIT
Press, 1986)

[20] J. Yao, C.L. Tan & H. Poh, Neural networks for
technical analysis: a study on LKCI, International journal
of theoretical and applied finance, 2(3), 1999, 221-241

[21] T. Masters, Advanced algorithms for neural networks
: a C++ sourcebook (New York: Wiley, 1995)

[22] F. Takens, Dynamical system and turbulence, lecture
notes in mathematics, 898(Warwick 1980), edited by A.
Rand & L.S. Young (Berlin: Springer, 1981)

[23] A.S. Soofi & L. Cao, Modelling and forecasting
financial data: techniques of nonlinear dynamics
(Norwell, Massachusetts: Kluwer academic publishers,
2002)

[24] C. Merkwirth, U. Parlitz, I. Wedekind & W.
Lauterborn, TSTOOL user manual,
http://www.physik3.gwdg.de/tstool/manual.pdf, 2002

