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ABSTRACT 
The Hurst exponent (H) is a statistical measure used to 
classify time series.  H=0.5 indicates a random series 
while H>0.5 indicates a trend reinforcing series.  The 
larger the H value is, the stronger trend.  In this paper we 
investigate the use of the Hurst exponent to classify series 
of financial data representing different periods of time. 
Experiments with backpropagation Neural Networks 
show that series with large Hurst exponent can be 
predicted more accurately than those series with H value 
close to 0.50.  Thus Hurst exponent provides a measure 
for predictability. 
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1.  Introduction 
 
The Hurst exponent, proposed by H. E. Hurst [1] for use 
in fractal analysis [2],[3], has been applied to many 
research fields.  It has recently become popular in the 
finance community [4],[5],[6] largely due to Peters’ work 
[7],[8]. The Hurst exponent provides a measure for long-
term memory and fractality of a time series.  Since it is 
robust with few assumptions about underlying system, it 
has broad applicability for time series analysis. The 
values of the Hurst exponent range between 0 and 1. 
Based on the Hurst exponent value H, a time series can be 
classified into three categories.  (1) H=0.5 indicates a 
random series.  (2) 0<H<0.5 indicates an anti-persistent 
series.  (3) 0.5<H<1 indicates a persistent series.  An anti-
persistent series has a characteristic of “mean-reverting”, 
which means an up value is more likely followed by a 
down value, and vice versa.  The strength of “mean-
reverting” increases as H approaches 0.0.  A persistent 
series is trend reinforcing, which means the direction (up 
or down compared to the last value) of the next value is 
more likely the same as current value.  The strength of 
trend increases as H approaches 1.0.  Most economic and 
financial time series are persistent with H>0.5. 
 

In time series forecasting, the first question we want to 
answer is whether the time series under study is 
predictable.  If the time series is random, all methods are 
expected to fail.  We want to identify and study those time 
series having at least some degree of predictability.  We 
know that a time series with a large Hurst exponent has 
strong trend, thus it’s natural to believe that such time 
series are more predictable than those having a Hurst 
exponent close to 0.5. In this paper we use neural 
networks to test this hypothesis. 
 
 Neural networks are nonparametric universal function 
approximators [9] that can learn from data without 
assumptions.  Neural network forecasting models have 
been widely used in financial time series analysis during 
the last decade [10],[11],[12].  As universal function 
approximators, neural networks can be used for surrogate 
predictability.  Under the same conditions, a time series 
with a smaller forecasting error than another is said to be 
more predictable.  We study the Dow-Jones index daily 
return from Jan. 2, 1930 to May. 14, 2004 and calculate 
the Hurst exponent of each period of 1024 trading days.  
We select 30 periods with large Hurst exponents and 30 
periods with Hurst exponents close to random series, and 
then we use these data to train neural networks.  We 
compare forecasting errors for these two groups and find 
that the errors are significantly different.  This research is 
done using Matlab.  All Matlab programs generating 
result for this paper can be downloaded from 
www.arches.uga.edu/~qianbo/research. 
 
The remainder of the paper is organised as follows: 
Section 2 describes the Hurst exponent in detail.  Section 
3 then describes the monte carlo simulation process we 
used to generate data with similar structure to the 
financial series of interest to us.  Section 4 describes a 
scramble test that we conducted to help verify that there is 
structure in the series due to the order of samples.  Section 
5 describes neural networks and their use to verify that 
sequences with larger values of the Hurst exponent can be 
more accurately learned and predicted than those with 
lower Hurst exponent values.  Finally, the paper is 
concluded in section 6. 



2.  Hurst exponent and R/S analysis 
 
The Hurst exponent can be calculated by rescaled range 
analysis (R/S analysis).  For a time series, X = X1, X2, … 
Xn, R/S analysis method is as follows: 
 

(1) Calculate mean value m. 
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(2) Calculate mean adjusted series Y 
 
Yt = Xt – m,     t = 1, 2, …, n 
 
(3) Calculate cumulative deviate series Z 

∑
=

=
t

i
it YZ

1
,      t = 1, 2, …, n 

 
(4) Calculate range series R 
 
Rt = max(Z1, Z2, …, Zt) – min(Z1, Z2, …, Zt)  
t = 1, 2, …, n 
 
(5) Calculate standard deviation series S 
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Here u is the mean value from X1 to Xt. 
 
(6) Calculate rescaled range series (R/S) 
 
(R/S)t = Rt/St    t = 1, 2, …, n 
 

Note (R/S)t is averaged over the regions [X1, Xt], [Xt+1, 
X2t] until [X(m-1)t+1, Xmt] where m=floor(n/t).  In practice, 
to use all data for calculation, a value of t is chosen that is 
divisible by n. 

 

Hurst found that (R/S) scales by power-law as time 
increases, which indicates 

 
(R/S)t = c*tH   
 

Here c is a constant and H is called the Hurst exponent.  
To estimate the Hurst exponent, we plot (R/S) versus t in 
log-log axes.  The slope of the regression line 
approximates the Hurst exponent.  For t<10, (R/S)t is not 
accurate, thus we shall use a region of at least 10 values 
to calculate rescaled range.  Figure 2.1 shows an example 
of R/S analysis. 

 
Figure 2.1.  R/S analysis for Dow-Jones daily return 

from 11/18/1969 to 12/6/1973 
 

In our experiments, we calculated the Hurst exponent for 
each period of 1024 trading days (about 4 years).  We use 
t = 24, 25, …, 210 to do regression.  In the financial domain, 
it is common to use log difference as daily return.  This is 
especially meaningful in R/S analysis since cumulative 
deviation corresponds to cumulative return.  Figure 2.2 
shows the Dow-Jones daily return from Jan. 2, 1930 to 
May 14, 2004.  Figure 2.3 shows the corresponding Hurst 
exponent for this period.  In this period, Hurst exponent 
ranges from 0.4200 to 0.6804.  We also want to know 
what the Hurst exponent would be for a random series in 
our condition. 

Figure 2.2. Dow-Jones daily return from 1/2/1930 to 5/14/2004 
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Figure 2.3. Hurst exponent for Dow-Jones daily return from 1/2/1930 to 5/14/2004 

 
 
3.  Monte Carlo simulation 
 
For a random series, Feller [13] gave expected (R/S)t 
formula as 3.1. 
 
E((R/S)t) = (n*π/2)0.50    (3.1) 
 
However, this is an asymptotic relationship and is only 
valid for large t.  Anis and Lloyd [14] provided the 
following formula to overcome the bias calculated from 
(3.1) for small t: 
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For t>300, it is difficult to calculate the gamma function 
by most computers.  Using Sterling’s function, formula 
(3.2) can be approximated by: 
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Peters [8] gave equation (3.4) as a correction for (3.2). 
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We calculate the expected (R/S) values for t=24, 25,…,210 
and do least squares regression at significance level 
α=0.05.  Results are shown in table 3.1. 
 

log2(E(R/S)) log2(t) 
Feller Anis Peters 

4 0.7001 0.6059 0.5709 
5 0.8506 0.7829 0.7656 
6 1.0011 0.9526 0.9440 
7 1.1517 1.1170 1.1127 

8 1.3022 1.2775 1.2753 
9 1.4527 1.4345 1.4340 
10 1.6032 1.5904 1.5902 
Regression 
Slope (H)  

0.5000 
±5.5511e-016 

0.5436 
± 0.0141 

0.5607 
± 0.0246 

 
Table 3.1.  Hurst exponent calculation from Feller, 

Anis and Peters formula 
 
From table 3.1, we can see that there are some differences 
between Feller’s, Anis’ and Peters’ formulae.  Moreover,  
their formulae are based on large numbers of data points.  
In our case, the data is fixed at 1024 points. So what is the 
Hurst exponent for random series in our case?   
 
Fortunately, we can use Monte Carlo simulation to derive 
the result.  We generate 10,000 Gaussian random series.  
Each series has 1024 values.  We calculate the Hurst 
exponent for each series and then average them.  We 
expect the average number to approximate the true value.  
We repeated this process 10 times.  Table 3.2 below gives 
the simulation results. 
 
 Simulated Hurst 

Exponent 
Standard deviation 

(Std.) 
1 0.5456 0.0486       
2 0.5452 0.0487     
3 0.5449 0.0488     
4 0.5454 0.0484     
5 0.5456 0.0488     
6 0.5454 0.0481     
7 0.5454 0.0487     
8 0.5457 0.0483     
9 0.5452 0.0484 
10 0.5459 0.0486 
Mean 0.5454 0.0485 
Std. 2.8917e-004  
 

Table 3.2.  Monte Carlo simulations for Hurst 
exponent of random series 

 



From table 3.2, we can see that in our situation, the Hurst 
exponent calculated from Monte Carlo simulations is 
0.5454 with standard deviation 0.0485.  Our result is very 
close to Anis’ formula.  Based on the above simulations, 
with 95% confidence, the Hurst exponent is in the interval 
0.5454 ± 1.96*0.0485, which is between 0.4503 and 
0.6405.  We choose those periods with Hurst exponent 
greater than 0.65 and expect those periods to be bearing 
some structure different from random series.  However, 
since these periods are chosen from a large sample (total 
17651 periods), we want to know if there exists true 
structure in these periods, or just by chance.  We run a 
scramble test for this purpose. 
 
 
4.  Scramble test 

 
To test if there exists true structure in the periods with 
Hurst exponent greater than 0.65, we randomly choose 10 
samples from those periods.  For each sample, we 
scramble the series and then calculate the Hurst exponent 
for this scrambled series.  The scrambled series has the 
same distribution as the original sample except that the 
sequence is random.  If there exists some structure in the 
sequence, after scrambling the structure will be destroyed 
and the calculated Hurst exponent should be close to that 
of a random series.  In our experiment, we scramble each 
sample 500 times and then the average Hurst exponent is 
calculated.  The results are shown in table 4.1 below. 
 
 Hurst exponent 

after scrambling 
Standard 
deviation 

1 0.5492 0.046 
2 0.5450 0.047 
3 0.5472 0.049 
4 0.5454 0.048 
5 0.5470 0.048 
6 0.5426 0.048 
7 0.5442 0.051 
8 0.5487 0.048 
9 0.5462 0.048 
10 0.5465 0.052 
Mean 0.5462 0.048 
 

Table 4.1.  The average Hurst exponent on 500 
scrambling runs 

 
From table 4.1, we can see that the Hurst exponents after 
the scrambling of samples are all very close to 0.5454 
which is the number from our simulated random series.  
Given this result, we can conclude that there must exist 
some structure in those periods making them different 
from random series and that scrambling destroys the 
structure.  We hope this structure can be exploited for 
prediction.  Neural networks, as universal function 
approximators, provide a powerful tool to learn the 
underlying structure. They are especially useful when the 
underlying rules are unknown.  We expect neural 

networks to discover the structure and thus benefit from it.  
We use neural network prediction error as a measure of 
predictability.  Below we compare prediction errors of the 
periods with Hurst exponents greater than 0.65 with those 
between 0.54 and 0.55. 
 
 
5. Neural networks 
 
In 1943, McClloch and Pitts [15] proposed a 
computational model simulating neurons.  This work is 
generally thought as the beginning of artificial neural 
networks research.  Rosenblatt [16],[17] popularized the 
concept of perceptrons and created several perceptron 
learning rules.  However, in 1969, Minsky and Papert [18] 
pointed that perceptrons cannot solve any non “linearly 
separable” problems.  People knew that multi-layer 
perceptrons (MLP) can simulate non “linearly separable” 
functions, but no one knew how to train them.  Neural 
network research was then nearly stopped until 1986.  In 
1986, Rumelhart [19] used the backpropagation algorithm 
to train MLP and thus resolved this long obsessed 
problem among connectionists.  Since then neural 
networks have regained considerable interest from many 
research fields.  Neural networks have become popular in 
the finance society and the research fund for neural 
network applications from financial institutions is the 
second largest [20]. 
 
A neural network is an interconnected assembly of simple 
processing nodes.  Each node calculates a summation of 
weighted inputs and then outputs its transfer function 
value to other nodes. The Feedforward backpropagation 
network is the most widely used network paradigm.  
Using the backpropagation training algorithm, neural 
network adjusts the weights so that it will minimize the 
square difference (error) between its observed outputs and 
their target values.  The backpropagation algorithm uses a 
gradient descent method to find a local minimum on the 
error surface.  It calculates the partial derivative of the 
square error for each weight.  The opposite of these 
partial derivatives (gradient) gives the direction in which 
the error decreases most.  This direction is called the 
steepest descent direction.  The standard backpropagation 
algorithm adjusts the weights along the steepest descent 
direction.  Although the error in the steepest descent 
direction is decreased most rapidly, it usually converges 
slowly and tends to be stranded due to oscillation.  
Therefore many backpropagation variants were invented 
to improve performance by optimizing direction and step 
size.  To name a few, we have backpropagation with 
momentum, conjugate gradient, Quasi-Newton and 
Levenberg-Marquardt [21].  After training, we can use the 
network to do prediction given unseen inputs.  In neural 
network forecasting, the first step is data preparation and 
pre-processing.  After training, we can use the network to 
do prediction given unseen inputs.  In neural network 
forecasting, the first step is data preparation and pre-
processing. 



 
5.1. Data preparation and pre-processing 
 
For Dow-Jones daily return data, we calculated the Hurst 
exponent for each period of 1024 trading days from 
1/2/1930 to 5/14/2004.   Among the total of 17651 
periods, there are 65 periods with Hurst exponents greater 
than 0.65 and 1152 periods with Hurst exponents between 
0.54 and 0.55.  Figure 5.3 below shows the histogram of 
Hurst exponents for all periods. 
 

 
Figure 5.3.  Histogram of all calculated Hurst 

exponents 
 
We randomly chose 30 periods from those with Hurst 
exponent greater than 0.65 and 30 periods from those with 
Hurst exponent between 0.54 and 0.55.  These two groups 
of 60 samples constituted our initial data set. 
 
Given a time series x1, x2, …, xi, xi+1, how do we 
construct a vector Xi from x1, x2, …, xi to predict xi+1?  
Taken’s theorem [22] tells us that we can reconstruct the 
underlying dynamical system by time-delay embedding 
vectors Xi = (xi, xi+τ, xi+2τ,…,xi+(d-1)τ) if we have 
appropriate d and τ.  Here d is called the embedding 
dimension and τ is called the separation.  Using the auto-
mutual information and false nearest neighbour methods 
[23], we can estimate d and τ.  We used the TSTOOL [24] 
package to run the auto-mutual information and false 
nearest neighbour methods for our 60 data sets.  
Separations of all data sets are suggested to be 1 by auto-
mutual information method.  This is consistent with our 
intuition since we have no reason to use separated values.  
As for embedding dimension, our data sets are suggested 
to be from 3 to 5.  We shall examine this later. 
 
After building the time-delay vector Xi and target value 
xi+1, we normalized the inputs Xi and output xi+1 to mean 
0 and standard deviation 1.  We had no need to normalize 
the output to a limited range, say –0.85 to 0.85, to avoid 
saturation because we used a linear transfer function in 
the output layer. 
 

We used a commonly used approach to deal with the 
over-fitting problem in neural networks.  We split the data 
set to three parts for training, validation and testing.  The 
training data are used to adjust the weights through error 
backpropagation.  The validation data are used to stop 
training when the mean square error in the validation data 
increases.  The network’s prediction performance is 
judged by the testing data.  We used the first 60% of the 
data for training, the following 20% for validation and the 
last 20% for testing.  In this way, we can have more 
confidence using the final network model for prediction 
since the forecasting data follow the testing data directly. 
 
5.2 Neural network construction 
 
Although neural networks are universal function 
approximators, we still need to pay much attention to their 
structure.  How many layers should we use?  How many 
nodes should we include in each layer?  Which learning 
algorithm should we choose?  In practice, most 
applications use one hidden layer since there is no 
apparent advantages for multi-hidden-layer networks over 
single-hidden-layer networks. Thus we used a single 
hidden layer network structure in our study.  For learning 
algorithm, we tested the Levenberg-Marquardt, conjugate 
gradient method, and the backpropagation with 
momentum algorithms.  We find that Levenberg-
Marquardt beats the other algorithms consistently in our 
test samples.  We chose the Levenberg-Marquardt 
learning algorithm with the sigmoid transfer function in 
the hidden layer and a linear transfer function in the 
output layer.  Now we need to determine the embedding 
dimension and the number of hidden nodes.  A heuristic 
rule to determine the number of hidden nodes is that the 
total degrees of freedom of a network should equal one 
and half of the square root of the total data numbers.  
Based on this rule, we have the following equation: 
 
(#input nodes+1)*(#hidden nodes) + (#hidden 
nodes+1)*(#output nodes) = 1.5sqrt(#data)  (5.2.1) 
 
In equation (5.2.1), 1 is for bias node.  For dimension 3, 
we have: 
 
 (3+1)*(#hidden nodes)+(#hidden nodes+1) = 1.5sqrt(1024)  
 
The solution for (#hidden nodes) is 10.  Similarly, we find 
that the number of hidden nodes for dimensions 4 and 5 
are 8 and 7 respectively.  For each dimension, we 
examine 5 network structures with the number of hidden 
nodes adjacent to the number suggested. For example 8, 9, 
10, 11, 12 hidden nodes for dimension 3.  We randomly 
choose 5 periods from each group (the group with Hurst 
exponents greater than 0.65 and the group with Hurst 
exponents between 0.54 and 0.55) to train each network.  
Each network is trained 100 times, and then the minimum 
NRMSE (Normalized Root Mean Square Error) is 
recorded.  NRMSE is defined as: 
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In (5.2.2), O is output value and T is target value.  
NRMSE gives a performance comparison to the mean 
prediction method.  If we always use the mean value to do 
prediction, NRMSE will be 1.  NRMSE is 0 when all 
predictions are correct. 
 
Table 5.1-5.3 gives the training results for various 
network structures. 
 
  Dimension 3, Hidden nodes 
 8 9 10 11 12 MIN Std. 

1 0.9572 0.9591 0.9632 0.9585 0.9524 0.9524 0.0039
2 0.9513 0.9531 0.9560 0.9500 0.9523 0.9500 0.0023
3 0.9350 0.9352 0.9332 0.9328 0.9359 0.9328 0.0013
4 0.9359 0.9426 0.9383 0.9351 0.9313 0.9313 0.0042
5 0.9726 0.9686 0.9652 0.9733 0.9647 0.9647 0.0040
6 0.9920 0.9835 0.9892 0.9793 0.9931 0.9793 0.0059
7 0.9831 0.9813 0.9725 0.9845 0.9825 0.9725 0.0048
8 0.9931 0.9852 0.9832 0.9877 0.9907 0.9832 0.0040
9 0.9684 0.9790 0.9773 0.9815 0.9862 0.9684 0.0066

10 0.9926 1.0044 1.0047 1.0014 1.0039 0.9926 0.0051
Mean 0.9681 0.9692 0.9683 0.9684 0.9693 0.9627 0.0042
Std. 0.0225 0.0215 0.0221 0.0232 0.0255 0.0207 0.0015
 
Table 5.1.  NRMSE for dimension 3 with hidden nodes 

8, 9, 10, 11 and 12 
 
 Dimension 4, Hidden nodes 
 6 7 8 9 10 MIN Std. 

1 0.9572 0.9572 0.9557 0.9558 0.9633 0.9557 0.0031
2 0.9534 0.9554 0.9523 0.9518 0.9574 0.9518 0.0023
3 0.9373 0.9406 0.9414 0.9437 0.9404 0.9373 0.0023
4 0.9419 0.9471 0.9392 0.9332 0.9376 0.9332 0.0052
5 0.9691 0.9678 0.9597 0.9669 0.9662 0.9597 0.0037
6 0.9907 0.9939 0.9836 0.9948 0.9876 0.9836 0.0046
7 0.9902 0.9816 0.9872 0.9766 0.9855 0.9766 0.0053
8 0.9852 0.9842 0.9802 0.9865 0.9878 0.9802 0.0029
9 0.9809 0.9729 0.9722 0.9669 0.9741 0.9669 0.0050

10 0.9916 0.9957 0.9991 1.0025 0.9959 0.9916 0.0041
Mean 0.9698 0.9696 0.9671 0.9679 0.9696 0.9637 0.0038
Std. 0.0210 0.0193 0.0204 0.0225 0.0203 0.0196 0.0012
 
Table 5.2.  NRMSE for dimension 4 with hidden nodes 

6, 7, 8, 9 and 10 
 
 Dimension 5, Hidden nodes 
 5 6 7 8 9 MIN Std. 

1 0.9578 0.9560 0.9617 0.9589 0.9622 0.9560 0.0026
2 0.9441 0.9466 0.9456 0.9456 0.9427 0.9427 0.0015
3 0.9410 0.9395 0.9449 0.9428 0.9396 0.9395 0.0023
4 0.9546 0.9453 0.9414 0.9409 0.9479 0.9409 0.0056
5 0.9659 0.9501 0.9671 0.9653 0.9653 0.9501 0.0071
6 0.9906 0.9919 0.9898 0.9901 0.9891 0.9891 0.0010
7 0.9803 0.9819 0.9805 0.9840 0.9837 0.9803 0.0017
8 0.9912 0.9980 1.0009 0.9991 1.0049 0.9912 0.0050
9 0.9770 0.9747 0.9742 0.9761 0.9689 0.9689 0.0032

10 0.9909 0.9984 0.9975 0.9977 0.9951 0.9909 0.0031
Mean 0.9693 0.9682 0.9704 0.9701 0.9699 0.9650 0.0033
Std. 0.0194 0.0233 0.0220 0.0226 0.0227 0.0217 0.0020
 

Table 5.3.  NRMSE for dimension 5 with hidden nodes 
5, 6, 7, 8, and 9 

From table 5.1 to 5.3, we can see that the differences of 
NRMSE for nodes within each dimension are very small.  
The number of hidden nodes with minimum average 
NRMSE for dimension 3, 4, 5 are 8, 8 and 6 respectively.  
Thus we use 8, 8, and 6 hidden nodes network for 
dimension 3, 4, and 5 to do prediction.  Each network is 
trained 100 times and the minimum NRMSE is recorded.  
Final NRMSE is the minimum of 3 dimensions.  Table 
5.4 gives NRMSE of our initial 60 samples for two 
groups. 
 

 H>0.65 0.55>H>
0.54  H>0.65 0.55>H>

0.54 
1 0.9534 0.9863 16 0.93 0.9747 
2 0.9729 0.9784 17 0.9218 0.9738 
3 0.9948 0.9902 18 0.9256 0.9635 
4 0.9543 0.9754 19 0.9326 0.957 
5 0.9528 0.9773 20 0.937 0.9518 
6 0.9518 0.9477 21 0.9376 0.9542 
7 0.9466 0.9265 22 0.9402 0.9766 
8 0.9339 0.9598 23 0.9445 0.9901 
9 0.9299 0.9658 24 0.9498 0.9777 

10 0.9435 0.9705 25 0.948 0.9814 
11 0.9372 0.9641 26 0.9486 0.9778 
12 0.9432 0.9824 27 0.9451 0.9968 
13 0.9343 0.9557 28 0.9468 0.9966 
14 0.9338 0.9767 29 0.9467 0.9977 
15 0.9265 0.9793 30 0.9542 0.9883 

Mean 0.9439 0.9731 
Std. 0.0145 0.0162  

 
Table 5.4.  NRMSE for two groups 

 
We ran the unpaired student’s t test for the null hypothesis 
that the mean values of the two groups are equal.  After 
calculation, the t statistic is 7.369 and p-value is 7.0290e-
010.  This indicates the two means are significantly 
different and the chance of equality is essentially 0.  This 
result confirms that the time series with larger Hurst 
exponent can be predicted more accurately. 
 
 
6.  Conclusion 
 
In this paper, we analyze the Hurst exponent for all 1024-
trading-day periods of the Dow-Jones index from Jan.2, 
1930 to May 14, 2004.  We find that the periods with 
large Hurst exponents can be predicted more accurately 
than those with H values close to random series.  This 
suggests that stock markets are not totally random in all 
periods.  Some periods have strong trend structure and 
this structure can be learnt by neural networks to benefit 
forecasting. 
 



Since the Hurst exponent provides a measure for 
predictability, we can use this value to guide data 
selection before forecasting.  We can identify time series 
with large Hurst exponents before we try to build a model 
for prediction.  Furthermore, we can focus on the periods 
with large Hurst exponents.  This can save time and effort 
and lead to better forecasting. 
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